finsler geometry meaning in English
芬斯拉几何
Examples
- The non - riemannian geometric quantities in finsler geometry describe the difference between finsler geometry and riemann geometry
Finsler几何中的非黎曼几何量刻画的是finsler几何与黎曼几何的不同之处。 - The study of these quantities is benefit for us to make out their distinction and the nature of finsler geometry
对这些量进行研究有利于我们看清楚它们之间的差异,并且对认清finsler几何的庐山真面目有十分重要的作用。 - Now there are two methods on the resarch of finsler geometry . one shi tensor method , the other is analytic method . in present papaer , we majorly use the lat tor
对于finsler几何的研究,现在主要有两种方法,一种是张量的方法,一种是分析的方法,本文主要采用了后者。 - Lots of concrete examples are ( , ) - metrics . and one of fundamental problems in finsler geometry is to find and study finsler metrics with constant ( flag ) curvature . on the basic , we majarly study the following problems in present paper : ( a ) to the property of a class of ( , ) - metrics in which is parallel with respect to riemann metric a and riemann metric a is of constant curvature , we obtain the following theorem4 . 3 let f ( , ) be a positive definite metric on the manifold m ( dimm > 3 )
在finsler几何中,我们现在已知的finsler度量已经很多了,但大多数具体的例子主要都集中在( , ) ?度量中,又在finsler几何中一个基本的问题就是去发现和研究具有常曲率的finsler度量,基于这些本文主要研究了以下一些问题: ( a )一类关于是平行的并且riemann度量具有常曲率的( , ) ?度量的特殊性质,得到了如下的定理4 - Some intrinsic metrics in differential manifolds , such as cara - theodory metrics and kobayashi metrics in complex manifolds , are finsler metrics . finsler metrics is just riemannian metrics without quadratic restriction , which was firstly introduced by b . riemann in 1854 . the geometry with finsler metric is called finsler geometry
Finsler度量是没有二次型限制的riemann度量, riemann在1854年的就职演说中已经涉及了这种情形。以finsler度量为基础的几何学被称为finsler几何。